

AlphaCAM Introduction to VBA

Page 2

The Interface

The VBA editor is available in all Advanced modules of AlphaCAM. The VBA
interface can be accessed from the Utils pull down menu as shown below

AlphaCAM Introduction to VBA

Page 3

The VBA interface is shown below

1. VBA menu and toolbars

2. Project Explorer Window ~ displays a list of the currently loaded projects

3. Properties Window ~ displays a list of properties for the active control

4. Userform Window ~ used to design and modify dialog boxes for the active project

5. Toolbox Window ~ used to add new controls to the active form i.e. command
buttons, labels, text boxes, etc….

6. Code Window ~ the program for the VBA macro is written in this window as a series
of subroutines and functions

7. Local Watch ~ displays values for all local variables at runtime, used in debugging

8. Watch Window ~ displays values for specified variable at runtime, used for
debugging

AlphaCAM Introduction to VBA

Page 4

VBA Directory Structure

The following structure has been established so that AlphaCam and programmers
can find their VBA projects easily.

There are two locations available for saving, the first is primarily for projects
written by Licom Systems and the second is for projects written by customers.

Licom Projects

Alph99\
Add-ins\ Licom DLL’s selected with UTILS | Add-ins

Autotas
Microscribe
Swsketch

StartUp\ Licom VB projects selected with UTILS | Add-ins
SysMacro\ Licom VB projects loaded up when AlphaCam is initialised

Customer Projects

Licomdir\
VBMacros\ Customer VBA projects selected with UTILS | VBA .. | Open

 VBA project
StartUp\ Customer VBA projects loaded up when AlphaCam is

 initialised

VBA Extensions

MacroName.aab AlphaEdit VBA project
MacroName.amb AlphaCAM milling VBA project
MacroName.arb AlphaCAM routing VBA project
MacroName.atb AlphaCAM turning VBA project
MacroName.aeb AlphaCAM wire EDM VBA project
MacroName.alb AlphaCAM laser VBA project
MacroName.afb AlphaCAM flame VBA project
MacroName.apb AlphaCAM punch VBA project
MacroName.asb AlphaCAM marble VBA project

FormName.frm Exported VBA form
FormName.frx Exported VBA form additional information
ModuleName.bas Exported VBA module

AlphaCAM Introduction to VBA

Page 5

VBA Macro Structure

A VBA Macro is known as a project and can be split into 2 sections

1. UserForms

Forms are essentially dialog boxes used to obtain information from the user
executing the macro. This information is passed into the module. A project can contain
more than one form.

Forms contain a series of controls which are placed on the form at design time by
the programmer using the toolbox. A control can be divided into 3 sections.

(i) Properties ~ these define the appearance of each control. Some of these
can only be set at design time, and some of can be modified at runtime. The most
important property is the name property, it is essential that this is set to a meaningful
name so that it can be referenced at any time later in the code.

Recommended VBA prefixes for control names

Cmb Combo box Lbl Label
Chk Check box Lst List box
Cmd Command button Opt Option button
Fra Frame Pic Picture box
Frm Form Txt Text box
Img Image box

 (ii) Methods ~ these define the behaviour of each control. Example methods
are Move Method (Moves a form or control, or moves all the controls in the Controls
collection) , SetFocus Method (Moves the focus to this instance of an object) and Zorder
Method (Places the object at the front or back of the Z order).

(iii) Events ~ these define the actions performed by the control i.e. mouse
events. Events are small subroutines which are performed when the control is selected.
Examples of events are Click Event (performed code when the user clicks on the control
with the mouse), BeforeUpdate Events (perform code before the display of the control is
updated) and Change Event (perform code when the value of the control changes).

AlphaCAM Introduction to VBA

Page 6

2. Modules

Modules contain the main bulk of the code and are split into subroutines and
functions. This is done so that the programmer can reuse code in different userforms
without having to rewrite it. A project can contain more than one module.

A subroutine is a program which performs a set task without returning a value.

A function is a program which performs a set task and can return one or more
values for use in another part of the project.

An important module is the Events module. This module is used when the
programmer wishes to add a new item to one of the AlphaCAM menus. Below is an
example of an events module to add a new menu.

Option Explicit

Function InitAlphacamAddIn(acamversion As Long) As Integer
 Dim fr As Frame
 Set fr = App.Frame
 Dim PopupName As String, ItemName As String, MenuName As String
 MenuName = "Standard Doors": ItemName = "Cathedral Door"
 With fr

 .AddMenuItem2 ItemName, "ShowfrmMain", acamMenuNEW, MenuName
 End with
 InitAlphacamAddIn = 0
End Function

Sub ShowForm()
 Load frmMain
 frmMain.Show
End Sub

AlphaCAM Introduction to VBA

Page 7

General Layout and Styles

Naming Conventions ~ Do not include any spaces in the name of the project
~ Set name for project and text file the same

Text ~ MS Sans Serif 8 points

Control Dimensions ~ If a form is a replacement for an AlphaCAM form make it
look the same as the original form
~ Textbox Height 18 points, Width 55 points
~ Label Height 12 points
~ Checkbox Height 15 points
~ Option Button Height 15 points
~ Command Button Height 18 points, Width 55 points

Alignment ~ Textboxes and labels align middles
~ Labels, set text right justified
~ Textboxes, set text left justified
~ Set selection margin to False

Modules ~ Always import the Accelerators and Evaluate modules

The Accelerators module is used when translating the text
file into other languages, and is used at the end of a form
initialise event by typing SetAccelerators Me.

The Evaluate module is when you want to ensure the
contents of a text box only contains numeric values and will
also enable the text box to perform full mathematical
functionality. Its use is shown below for a textbox named
textbox1.

Private Sub textbox1_BeforeUpdate(ByVal Cancel As MSForms.ReturnBoolean)
 TextBoxCalculate textbox1, Cancel
End Sub

